• 最近访问:
发表于 2025-08-04 07:32:20 股吧网页版
创新算法筛选出54种高性能光伏材料
来源:科技日报

  记者近日从昆明理工大学获悉,该校材料科学与工程学院种晓宇、何京津、冯晶教授团队在“人工智能+材料”交叉领域取得重要突破。研究团队提出了“连续迁移”机器学习框架,成功解决了小数据集下材料多性能预测的技术瓶颈,为新型功能材料的高效研发提供了新思路。相关研究成果发表于国际期刊《先进功能材料》。

  传统机器学习方法在材料性能预测中常受限于数据稀缺问题,尤其当目标性能样本量不足时,模型精度难以保证。针对这一挑战,团队创新性地构建了“连续迁移”学习策略。该策略首先基于海量材料的形成能数据训练高精度基础模型,再通过迁移学习依次预测材料的稳定性、带隙、体积模量等关键性能。当面对仅51条数据的剪切模量预测任务时,团队进一步以体积模量模型为“跳板”,进行二次迁移,使小数据集下的预测可靠性显著提升。

  通过该框架,研究团队从1.8万余种候选材料中,快速筛选出54种兼具高稳定性与优异延展性的无机双钙钛矿涂层材料。其中,六氟合铱酸铯铜材料表现尤为突出。其带隙值适配光伏应用需求,剪切模量与体积模量比值显示出高延展性,稳定性测试也验证了其潜在实用价值。这一成果不仅为钙钛矿太阳能电池、光催化等领域提供了候选材料库,更证明了迁移学习在材料多性能协同优化中的普适性,为其他材料的性能预测与优化提供了可推广的框架。

  据了解,此项研究依托在该校的金属先进凝固成形及装备技术国家地方联合工程研究中心完成,是昆明理工大学在材料信息学领域的又一重要进展,为有效解决传统机器学习在数据稀缺场景下的性能瓶颈,破解“数据少、任务多”的材料研发难题提供了可推广的计算工具,也为材料多性能协同优化提供了高效计算范式。

郑重声明:用户在财富号/股吧/博客等社区发表的所有信息(包括但不限于文字、视频、音频、数据及图表)仅代表个人观点,与本网站立场无关,不对您构成任何投资建议,据此操作风险自担。请勿相信代客理财、免费荐股和炒股培训等宣传内容,远离非法证券活动。请勿添加发言用户的手机号码、公众号、微博、微信及QQ等信息,谨防上当受骗!
作者:您目前是匿名发表   登录 | 5秒注册 作者:,欢迎留言 退出发表新主题
温馨提示: 1.根据《证券法》规定,禁止编造、传播虚假信息或者误导性信息,扰乱证券市场;2.用户在本社区发表的所有资料、言论等仅代表个人观点,与本网站立场无关,不对您构成任何投资建议。用户应基于自己的独立判断,自行决定证券投资并承担相应风险。《东方财富社区管理规定》

扫一扫下载APP

扫一扫下载APP
信息网络传播视听节目许可证:0908328号 经营证券期货业务许可证编号:913101046312860336 违法和不良信息举报:021-34289898 举报邮箱:jubao@eastmoney.com
沪ICP证:沪B2-20070217 网站备案号:沪ICP备05006054号-11 沪公网安备 31010402000120号 版权所有:东方财富网 意见与建议:021-54509966/952500